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1 Method
1.1 Methods in Tutorial
1.1.1 Q learning, DDPG and Policy gradient

This is a continuous environment, so the action must be discretized. The state, however, is
very large and can’t be approximate very well (as discussed in section 2), so plain Q learning
(DDPG as well) is bound to overfit on a very small dataset.

Policy gradient is an on-policy RL algorithm, so it’s sample efficiency is much worse than Q
learning or DDPG, thus not working as Q learning failed.

1.1.2 Genetic Algorithm and Bandit Randomized Probability Matching

GA is one of the most promising algorithm we think at the beginning of the contest, but
it’s not working well. The reason is that actions are not local, as in TSP like problem, that
swap some values will only affect nearby years. In this problem, action of the first year may
largely affect reward of last years. Another problem is that GA needs large population, which
is infeasible.

BRPM is somewhat similar with PG, since it’s also learning a model of action. BRPM
introduced two critical hypothesis: 1. actions of different years are independent 2. actions are
single modal (the beta function has only one peak, even if there maybe a equally good but
different action). The two hypothesis reduced possible action space, whether it work depends
on the correctness of it’s hypothesis.

BRPM is the best algorithm among tutorials in our experiment, other algorithms maybe
tuned to be better, but they are also more difficult to tune than BRPM.

1.2 Proposed method
We have tried and tuned all methods provided in tutorials, we also tried cross entropy method

(CEM), DDPG, kernel density estimation (KDE) and some of their variants, finally come up
with the following method that will overcome their disadvantages (hopefully).

Our algorithm is indeed a mixture of Q learning and simulated annealing (SA).
We perform learning on continuous observation and actions, don’t use discretization.
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1.2.1 Two key points in our method

1. Linear corelation between some actions exists: In this problem, the most significant
corelation is ITN and IRS with the same year, if ITN is higher then IRS can be lower, and the
sum of ITN and IRS can’t be too high to save money. Other corelations are also possible, for
example, if some ITN remain effective in the next year, then there will be a strong corelation
between adjacent years.

2. Change related actions in a consistent direction may be better: As we don’t know these
corelations in advance (which can be hand coded, but we consider this approach as cheating,
because if the action space of bandit problem is permuted, won’t work at all; but our method
won’t be affected), we can’t easily utilize this knowledge. And there may be some unknown
relationships. Our approach is to find out most related actions, and optimize over these actions.

1.2.2 How to measure corelation?

We denote actions as [x1, x2, x3, ..x10].
While linear corelation can be calculated directly, we use a different method.
First, we sample a k subset of actions, [xa1 , xa2 , ..., xak

], aj ∈ [1, 10]. Then for these k actions,
we have n observations, form a matrix Xn×k, y, y is the observed scores. (similar to bagging
that we dropped some features).

Then we use a linear regress to model relations between these observations and scores. If we
can get a good prediction using these actions, then these actions(features) are most related to
score and to each other.

1.2.3 How to explore a (potentially) better action?

The linear relation also gives us an approach to adjust policy.
For example, if we know action 0, 1, 3 is most related, then the linear model can be a good

depict of the reward trend (like Q function in Q learning). We can utilize this model to find a
good action in mind (but maybe bad, then the model will adjust by itself to correct this error),
then query the env to return reward of this policy. We only perform optimization on these
actions, which makes it similar to SA or coordinate descent.

In practice, we use an ensemble of a few linear models built on different feature sets to
increase stability. We don’t optimize precisely, which will lead to over optimistic, instead we
sample some actions, then choose the most promising. Our approach incorporates exploitation
and exploration naturally.

1.2.4 Advantages of our method

1. Find and optimize over corelated actions automatically.
2. Using feature-wise bagging to deal with overfitting.
3. No assumption on single modal like in BRPM; Don’t suffer from the instability and

infeasibility of cross operation in GA.
4. Can find relatively good solution more frequently compared to other approach, very bad

outcome (e.g. negative reward) are less likely.
5. While our algorithm are more stable than random explore, this may harm the ability to

find very high reward, so the average reward may be a better indicator of performance rather
than medium for our algorithm.

1.2.5 Hyper-parameters

Warm up trial number: how many random trials we need to gather enough relation informa-
tion.

Model number: how many feature set need to be tried.
Feature number: select how many feature out of 10 features.
Survive number: Use how many feature in the ensemble model.
Sample number: how many actions are tried on trained model.
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These are all parameters, we didn’t spend much time on tuning these parameters, but we
expect our method is robust to these hyper-parameters.

Tune these parameters may lead to better result.

1.3 Extend to a theoretical paper
As far as I know, there are few theoretical results on explore efficiency in such constrained

trial bandit problem.
This method, however, may not work very well on the final test environment, because of the

randomness of the score mechanism, and the ”no free lunch theorem”. The environment will
change a lot in the final test, it can hardly be treated as the same problem (this change maybe
larger than from an atari game to another), which makes a problem specific design harder, so
We didn’t spend much time on tuning hyper-parameters.

Under some assumptions that the environment is locally linear and convex, with some random
noise, our method that utilizing linear dependency may give a tighter bound on convergence,
more experiments are also needed, which will be a future work.

2 About the problem setting
We are in full agreement on the problem setting of this competition, especially on the con-

straint of number of trials, which makes this problem totally different from any RL problem
We’ve met before.

20 trials for Malaria Control, however, still seems luxurious, because this experiment will
take on thousands of people for 100 years.

Exploring an action space of size [0, 1]
10 with in 20 trials is theoretically impossible, because

even if we only search for discrete value 0 and 1, there are still 210 = 1024 possible policies.
The environment is not a MDP if we take actions of previous year as state, so the observation

space is large even when we go step by step. Because if we only consider 5 values 0, 0.25, 0.5,
0.75, 1, the observation space is 25 in the second year, and 125 in the third, which make tabular
Q learning infeasible.

On the other hand, the reward function of just the first year is already very complex and
rugged, so can’t be approximated very well in only 20 trials. The error will accumulate later
and make precision much worse. Taking this into account, we didn’t use sequential information.

We think there are indeed some probability that the sequential information can help in this
problem, if there is a way to utilize some problem specific structure (which we didn’t find out,
for example, the 4th year may highly depend on the action of the 2nd year) in this problem.

However, any algorithm that seems perform better constantly (if it’s not an
outcome of randomness) in this problem should be treated carefully: It’s impossible
to be better than random without any assumption (because we can’t try every
possible policies), and if there are such assumptions, are they learnt from data
(20 trials) rather than found by human trial (unlimited trials in fact, even if the
environment changed, the underlying structure won’t change much, so some rules
may remain effective) ?
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4 After Contest
Our method is designed for a trade-off between random explore and utilizing model, but did

not take randomness into consideration in our model, which is a fatal flaw. Gaussian Process
maybe a better approach (but as I know, they still have very various performance). The final
test environment is still not published (until 8.15), so we can’t test by ourselves to find out
whether it’s a outcome of randomness (which will make this contest a lottery).
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